\(\int \sqrt {a+a \cos (c+d x)} (A+C \cos ^2(c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx\) [1206]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F(-1)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 37, antiderivative size = 123 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {2 a (8 A+15 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a A \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 d \sqrt {a+a \cos (c+d x)}}+\frac {2 A \sqrt {a+a \cos (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d} \]

[Out]

2/15*a*A*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+2/5*A*sec(d*x+c)^(5/2)*sin(d*x+c)*(a+a*cos(d*x+c
))^(1/2)/d+2/15*a*(8*A+15*C)*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {4306, 3123, 3059, 2850} \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {2 a (8 A+15 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{15 d \sqrt {a \cos (c+d x)+a}}+\frac {2 A \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}{5 d}+\frac {2 a A \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{15 d \sqrt {a \cos (c+d x)+a}} \]

[In]

Int[Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(7/2),x]

[Out]

(2*a*(8*A + 15*C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(15*d*Sqrt[a + a*Cos[c + d*x]]) + (2*a*A*Sec[c + d*x]^(3/2)
*Sin[c + d*x])/(15*d*Sqrt[a + a*Cos[c + d*x]]) + (2*A*Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^(5/2)*Sin[c + d*x]
)/(5*d)

Rule 2850

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Sim
p[-2*b^2*(Cos[e + f*x]/(f*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), x] /; FreeQ[{a, b,
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3059

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n
 + 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n +
1)*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rule 3123

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Si
n[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x]
)^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n
+ 2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2,
 0])

Rule 4306

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx \\ & = \frac {2 A \sqrt {a+a \cos (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+a \cos (c+d x)} \left (\frac {a A}{2}+\frac {1}{2} a (2 A+5 C) \cos (c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx}{5 a} \\ & = \frac {2 a A \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 d \sqrt {a+a \cos (c+d x)}}+\frac {2 A \sqrt {a+a \cos (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {1}{15} \left ((8 A+15 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a (8 A+15 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a A \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 d \sqrt {a+a \cos (c+d x)}}+\frac {2 A \sqrt {a+a \cos (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.35 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.59 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {\sqrt {a (1+\cos (c+d x))} (14 A+15 C+8 A \cos (c+d x)+(8 A+15 C) \cos (2 (c+d x))) \sec ^{\frac {5}{2}}(c+d x) \tan \left (\frac {1}{2} (c+d x)\right )}{15 d} \]

[In]

Integrate[Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(7/2),x]

[Out]

(Sqrt[a*(1 + Cos[c + d*x])]*(14*A + 15*C + 8*A*Cos[c + d*x] + (8*A + 15*C)*Cos[2*(c + d*x)])*Sec[c + d*x]^(5/2
)*Tan[(c + d*x)/2])/(15*d)

Maple [A] (verified)

Time = 1.12 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.61

method result size
default \(-\frac {2 \left (\sec ^{\frac {7}{2}}\left (d x +c \right )\right ) \left (\cos \left (d x +c \right )-1\right ) \left (8 A \left (\cos ^{2}\left (d x +c \right )\right )+15 C \left (\cos ^{2}\left (d x +c \right )\right )+4 A \cos \left (d x +c \right )+3 A \right ) \sqrt {\left (1+\cos \left (d x +c \right )\right ) a}\, \cot \left (d x +c \right )}{15 d}\) \(75\)
parts \(-\frac {2 A \left (\sec ^{\frac {7}{2}}\left (d x +c \right )\right ) \sqrt {\left (1+\cos \left (d x +c \right )\right ) a}\, \left (8 \left (\cos ^{3}\left (d x +c \right )\right )-4 \left (\cos ^{2}\left (d x +c \right )\right )-\cos \left (d x +c \right )-3\right ) \cot \left (d x +c \right )}{15 d}-\frac {2 C \left (\sec ^{\frac {7}{2}}\left (d x +c \right )\right ) \sqrt {\left (1+\cos \left (d x +c \right )\right ) a}\, \left (\cos \left (d x +c \right )-1\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \cot \left (d x +c \right )}{d}\) \(112\)

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2)*(a+a*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/15/d*sec(d*x+c)^(7/2)*(cos(d*x+c)-1)*(8*A*cos(d*x+c)^2+15*C*cos(d*x+c)^2+4*A*cos(d*x+c)+3*A)*((1+cos(d*x+c)
)*a)^(1/2)*cot(d*x+c)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.65 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {2 \, {\left ({\left (8 \, A + 15 \, C\right )} \cos \left (d x + c\right )^{2} + 4 \, A \cos \left (d x + c\right ) + 3 \, A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{15 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )} \sqrt {\cos \left (d x + c\right )}} \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

2/15*((8*A + 15*C)*cos(d*x + c)^2 + 4*A*cos(d*x + c) + 3*A)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/((d*cos(d*x
+ c)^3 + d*cos(d*x + c)^2)*sqrt(cos(d*x + c)))

Sympy [F(-1)]

Timed out. \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**(7/2)*(a+a*cos(d*x+c))**(1/2),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 474 vs. \(2 (105) = 210\).

Time = 0.38 (sec) , antiderivative size = 474, normalized size of antiderivative = 3.85 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {2 \, {\left (\frac {A {\left (\frac {15 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {25 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {17 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {7 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )} {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{3}}{{\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {7}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {7}{2}} {\left (\frac {3 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {3 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {\sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + 1\right )}} + \frac {15 \, C {\left (\frac {\sqrt {2} \sqrt {a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {3 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {\sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )} {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{3}}{{\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {7}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {7}{2}} {\left (\frac {3 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {3 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {\sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + 1\right )}}\right )}}{15 \, d} \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

2/15*(A*(15*sqrt(2)*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 25*sqrt(2)*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c)
+ 1)^3 + 17*sqrt(2)*sqrt(a)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 7*sqrt(2)*sqrt(a)*sin(d*x + c)^7/(cos(d*x +
c) + 1)^7)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^3/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(7/2)*(-sin(d*x
+ c)/(cos(d*x + c) + 1) + 1)^(7/2)*(3*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 3*sin(d*x + c)^4/(cos(d*x + c) + 1
)^4 + sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + 1)) + 15*C*(sqrt(2)*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 3*sq
rt(2)*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*sqrt(2)*sqrt(a)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - sq
rt(2)*sqrt(a)*sin(d*x + c)^7/(cos(d*x + c) + 1)^7)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^3/((sin(d*x + c)/
(cos(d*x + c) + 1) + 1)^(7/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(7/2)*(3*sin(d*x + c)^2/(cos(d*x + c) + 1
)^2 + 3*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + 1)))/d

Giac [F(-1)]

Timed out. \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Timed out

Mupad [B] (verification not implemented)

Time = 2.66 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.40 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {2\,\sqrt {a\,\left (\cos \left (c+d\,x\right )+1\right )}\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\left (28\,A\,\sin \left (c+d\,x\right )+30\,C\,\sin \left (c+d\,x\right )+16\,A\,\sin \left (2\,c+2\,d\,x\right )+36\,A\,\sin \left (3\,c+3\,d\,x\right )+8\,A\,\sin \left (4\,c+4\,d\,x\right )+8\,A\,\sin \left (5\,c+5\,d\,x\right )+45\,C\,\sin \left (3\,c+3\,d\,x\right )+15\,C\,\sin \left (5\,c+5\,d\,x\right )\right )}{15\,d\,\left (10\,\cos \left (c+d\,x\right )+8\,\cos \left (2\,c+2\,d\,x\right )+5\,\cos \left (3\,c+3\,d\,x\right )+2\,\cos \left (4\,c+4\,d\,x\right )+\cos \left (5\,c+5\,d\,x\right )+6\right )} \]

[In]

int((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(7/2)*(a + a*cos(c + d*x))^(1/2),x)

[Out]

(2*(a*(cos(c + d*x) + 1))^(1/2)*(1/cos(c + d*x))^(1/2)*(28*A*sin(c + d*x) + 30*C*sin(c + d*x) + 16*A*sin(2*c +
 2*d*x) + 36*A*sin(3*c + 3*d*x) + 8*A*sin(4*c + 4*d*x) + 8*A*sin(5*c + 5*d*x) + 45*C*sin(3*c + 3*d*x) + 15*C*s
in(5*c + 5*d*x)))/(15*d*(10*cos(c + d*x) + 8*cos(2*c + 2*d*x) + 5*cos(3*c + 3*d*x) + 2*cos(4*c + 4*d*x) + cos(
5*c + 5*d*x) + 6))